在运营商传统网络运维中,巡检、告警分析、故障处理等工作长期积累了丰富的经验,其价值并未被充分挖掘。同时,目前的人工运维存在系统复杂耦合度高、数据来源多种多样、人工维护风险度高,修复间隔时间过长、人员培养难度大等现状,导致了性能相关告警不明确、无效告警筛查规则缺失、故障维护只能被动解决,优化/维护工单重复派发等问题,影响网络运维的效率和成本。为了优化网络运维的工作模式,提升网络运维准确性及效率性,提出集中维护支撑服务项目,基于人工智能(ArtificialIntelligence)的运维解决方案旨在强调实现以维护为中心,依托大数据挖掘技术与深度学习算法,实现问题早发现,由被动处理问题改为积极预防问题,从而提高整体资源的利用率和维护效率。
02基于人工智能(AI)核心算法2.1聚类算法(KMeans)
通过对多维度求欧拉距离(或余弦距离),不断的迭代对隐患进行聚类,找到关键核心点的特性进行隐患挖掘。K-Means算法是基于多维度距离的聚类算法,通过设置参数K,将样本点分为K个紧凑且独立的簇,每个簇由与簇的质心欧拉距离靠近的样本点组成。
计算步骤:
·随机选取K个中心点遍历所有数据,将每个数据划分到最近的中心点中
·计算每个聚类的平均值,并作为新的中心点
·重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代
以每个基站作为样本点,以其性能指标参数及历史告警类别和频次作为特征,对所有有告警基站进行K-Means聚类,通过不断迭代将将告警类型依据相似性能指标进行聚类,深入挖掘各类告警的关键核心特征,作为基站画像、隐患挖掘与管理的基础。
2.2常规分类算法(逻辑回归,KNN,决策树,随机森林)
通过把相似隐患进行归并,可以对隐患进行分级,从而方便查找隐患的级别。常规分类算法是有监督的机器学习算法,对于给定的目标类别,将样本进行分类。
逻辑回归:基于Sigmoid函数的多特征的二分类/多分类广义线性回归。通过建立代价函数并利用梯度下降优化的方法,实现多样本的分类。
KNN:K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是将每个样本分类为它最接近的k个样本的类别均值。
决策树:决策树又称为判定树,是运用于分类的一种树结构,其中的每个内部节点代表对某一属性的一次测试,每条边代表一个测试结果,叶节点代表某个类或类的分布。决策树的决策过程需要从决策树的根节点开始,待测数据与决策树中的特征节点进行比较,并按照比较结果选择选择下一比较分支,直到叶子节点作为最终的决策结果。
随机森林:从样本集中选取n个样本,构建决策树,并重复这一步骤m次形成m个决策树,通过投票表决决定样本类别。
以基站作为样本点,通过分类方法可以将基站分为隐患基站和非隐患基站。通过对隐患基站性能指标参数、资产信息、地理信息及告警类型级别作为特征,对基站告警隐患进行分级,确定基站隐患级别,实现对基站健康度打分。并可根据已训练好的机器学习模型对新样本进行健康度评估。实现设备状态预判。对于隐患级别高的基站进行重点